High-resolution NMR characterization of a spider-silk mimetic composed of 15 tandem repeats and a CRGD motif.

نویسندگان

  • Glendon D McLachlan
  • Joseph Slocik
  • Robert Mantz
  • David Kaplan
  • Sean Cahill
  • Mark Girvin
  • Steve Greenbaum
چکیده

Multidimensional solution NMR spectroscopic techniques have been used to obtain atomic level information about a recombinant spider silk construct in hexafluoro-isopropanol (HFIP). The synthetic 49 kDa silk-like protein mimics authentic silk from Nephila clavipes, with the inclusion of an extracellular matrix recognition motif. 2D (1)H-(15)N HSQC NMR spectroscopy reveals 33 cross peaks, which were assigned to amino acid residues in the semicrystalline repeat units. Signals from the amorphous segments in the primary sequence were weak and broad, suggesting that this region is highly dynamic and undergoing conformational exchange. An analysis of the deviations of the (13)C(alpha), (13)C(beta), and (13)CO chemical shifts relative to the expected random coil values reveals two highly alpha-helical regions from amino acid 12-19 and 26-32, which comprise the polyalanine track and a GGLGSQ sequence. This finding is further supported by phi-value analysis and sequential and medium-range NOE interactions. Pulsed field gradient NMR measurements indicate that the topology of the silk mimetic in HFIP is nonglobular. Moreover, the 3D (15)N-NOESY HSQC spectrum exhibits few long-range NOEs. Similar spectral features have been observed for repeat modules in other polypeptides and are characteristic of an elongated conformation. The results provide a residue-specific description of a silk sequence in nonaqueous solution and may be insightful for understanding the fold and topology of highly concentrated, stable silk before spinning. Additionally, the insights obtained may find application in future design and large-scale production and storage of synthetic silks in organic solvents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant Production and Determinants for Fiber Formation

Spider dragline silk is Nature’s high-performance fiber that outperforms the best man-made materials by displaying extraordinary mechanical properties. In addition, spider silk is biocompatible and biodegradable, which makes it suitable as a model for biomaterial production. Dragline silk consists of large structural proteins (spidroins) comprising an extensive region of poly-alanine/glycine-ri...

متن کامل

Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

(2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

متن کامل

Modular evolution of egg case silk genes across orb-weaving spider superfamilies.

Spider silk proteins (fibroins) are renowned for their extraordinary mechanical properties and biomimetic potential. Despite extensive evolutionary, ecological, and industrial interest in these fibroins, only a fraction of the known silk types have been characterized at the molecular level. Here we report cDNA and genomic sequences of the fibroin TuSp1, which appears to be the major component o...

متن کامل

Recombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation

Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strengt...

متن کامل

Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.

Araneoid spiders use specialized abdominal glands to produce up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode aciniform fibers (wrapping silk) and the mechanical properties of these fibers have not been characterized previously. To gain a better understanding of the molecular radiation of spider silk fibroin genes, cDNA lib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2009